
© 2020 Amazon Web Services, Inc./atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

Amazon Linux 2 NSS Cryptographic Module

Module Version 1.0

FIPS 140-2 Non-Proprietary Security Policy

Document Version 1.2

Last update: 2020-Mar-30

Prepared by:

atsec information security corporation

9130 Jollyville Road, Suite 260

Austin, TX 78759

www.atsec.com

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 2 of 43

Table of Contents

1 Introduction ... 6

1.1 Purpose of the Security Policy... 6

1.2 Target Audience ... 6

2 Cryptographic Module Specification .. 7

2.1 Module Overview ... 7

2.2 FIPS 140-2 Validation Scope ... 7

2.3 Definition of the Cryptographic Module ... 7

2.4 Definition of the Physical Cryptographic Boundary .. 8

2.5 Tested Operational Environments .. 9

2.6 Modes of Operation .. 9

3 Module Ports and Interfaces .. 11

4 Roles, Services and Authentication ... 12

4.1 Roles .. 12

4.2 Role Assumption and Operator Authentication .. 12

4.2.1 Strength of the Operator Authentication Mechanism ... 12

4.3 Services .. 13

4.3.1 Calling Convention of API Functions ... 13

4.3.2 Services in the FIPS-Approved Mode of Operation .. 14

4.3.3 Services in the Non-FIPS-Approved Mode of Operation ... 18

4.4 Algorithms .. 21

4.4.1 FIPS-Approved Algorithms ... 21

4.4.2 Non-Approved-but-Allowed Algorithms ... 24

4.4.3 Non-Approved Algorithms ... 24

5 Physical Security .. 26

6 Operational Environment ... 27

6.1 Applicability.. 27

6.2 Policy ... 27

7 Cryptographic Key Management .. 28

7.1 Random Number Generation .. 31

7.2 Key Generation .. 31

7.3 Key Entry and Output ... 31

7.4 Key/CSP Storage... 31

7.5 Key/CSP Zeroization ... 32

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 3 of 43

7.6 Key Establishment .. 32

7.7 Handling of Keys and CSPs between Modes of Operation ... 32

8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC) 33

9 Self-Tests ... 34

9.1 Power-on Self-Tests .. 34

9.2 Conditional Self-Tests ... 35

9.3 On-Demand self-tests .. 35

10 Guidance ... 36

10.1 Debug and Trace .. 36

10.2 Crypto-Officer Guidance ... 36

10.2.1 Access to Audit Data ... 37

10.3 User Guidance ... 37

10.3.1 TLS Protocol .. 38

10.3.2 Triple-DES Data Encryption ... 38

10.3.3 Key Usage and Management ... 38

10.4 Handling Self-Test Errors ... 38

11 Mitigation of Other Attacks ... 39

11.1.1 Timing Attacks on RSA .. 39

11.1.2 Cache-Timing Attacks on RSA and DSA .. 39

11.1.3 Arithmetic Errors in RSA Signatures .. 39

12 Acronyms, Terms and Abbreviations ... 40

13 References ... 41

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 4 of 43

List of Tables

Table 1: FIPS 140-2 Security Requirements. .. 7

Table 2: Components of the module. .. 8

Table 3: Tested operational environments. .. 9

Table 4: Ports and interfaces. .. 11

Table 5: Services in the FIPS-approved mode of operation. ... 14

Table 6: Services in the non-FIPS approved mode of operation.. 19

Table 7: FIPS-approved cryptographic algorithms. .. 21

Table 8: Non-Approved-but-allowed cryptographic algorithms. .. 24

Table 9: Non-FIPS approved cryptographic algorithms. ... 24

Table 10: Lifecycle of public keys, secret/private keys and other Critical Security Parameters (CSPs). 28

Table 11: Self-tests. .. 34

Table 12: Conditional self-tests. .. 35

List of Figures

Figure 1: Logical cryptographic boundary. .. 8

Figure 2: Hardware block diagram. .. 9

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 5 of 43

Copyrights and Trademarks

Amazon is a registered trademark of Amazon Web Services, Inc. or its affiliates.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 6 of 43

1 Introduction

This document is the non-proprietary FIPS 140-2 Security Policy for version 1.0 of the Amazon Linux 2
NSS Cryptographic Module. It contains the security rules under which the module must be operated
and describes how this module meets the requirements as specified in FIPS 140-2 (Federal
Information Processing Standards Publication 140-2) for a Security Level 1 module.

1.1 Purpose of the Security Policy

There are three major reasons that a security policy is needed:

• It is required for FIPS 140 2 validation,

• It allows individuals and organizations to determine whether a cryptographic module, as
implemented, satisfies the stated security policy, and

• It describes the capabilities, protection and access rights provided by the cryptographic
module, allowing individuals and organizations to determine whether it will meet their
security requirements.

1.2 Target Audience

This document is part of the package of documents that are submitted for FIPS 140 2 conformance
validation of the module. It is intended for the following audience:

• Developers.

• FIPS 140-2 testing lab.

• The Cryptographic Module Validation Program (CMVP).

• Customers using or considering integration of Amazon Linux 2 NSS Cryptographic Module.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 7 of 43

2 Cryptographic Module Specification

2.1 Module Overview

The Amazon Linux 2 NSS Cryptographic Module (hereafter referred to as the “module”) is a set of
libraries designed to support cross-platform development of security-enabled applications. These
applications may support the TLS protocol, PKCS #5, PKCS #7, PKCS #11, PKCS #12, S/MIME, X.509
v3 certificates, and other security standards supporting FIPS 140-2 validated cryptographic
algorithms. The module provides a C language Application Program Interface (API) for use by other
calling applications that require cryptographic functionality.

The module provides support for AESNI instruction set from the CPU for AES and C-language generic
implementations for the algorithms. Although the module supports more than one implementation of
algorithms, only one implementation of an algorithm will be available at runtime.

2.2 FIPS 140-2 Validation Scope

Table 1 shows the security level claimed for each of the eleven sections that comprise the FIPS 140-2
standard.

Table 1: FIPS 140-2 Security Requirements.

Security Requirements Section Level

1 Cryptographic Module Specification 1

2 Cryptographic Module Ports and Interfaces 1

3 Roles and Services and Authentication 2

4 Finite State Machine Model 1

5 Physical Security N/A

6 Operational Environment 1

7 Cryptographic Key Management 1

8 EMI/EMC 1

9 Self-Tests 1

10 Design Assurance 1

11 Mitigation of Other Attacks 1

Overall Level 1

2.3 Definition of the Cryptographic Module

The Amazon Linux 2 NSS Cryptographic Module is defined as a Software, Multi-chip Standalone
module per the requirements within FIPS 140-2. The logical cryptographic boundary of the module
consists of shared library files and their integrity test HMAC files, which are delivered through the
Amazon Linux 2 yum core repository (ID amz2-core/2/x86_64) from the following RPM files:

• nss-softokn-3.36.0-5.amzn2.0.1.x86_64.rpm

• nss-softokn-freebl-3.36.0-5.amzn2.0.1.x86_64.rpm

Table 2 summarizes the components of the cryptographic module.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 8 of 43

Table 2: Components of the module.

Component Description

/usr/lib64/libnssdbm3.so This library provides database storage implementations.

/usr/lib64/libsoftokn3.so This library provides exposes FreeBL functionality through a
PKCS#11 interface.

/usr/lib64/libfreeblpriv3.so This FreeBL library includes implementations for big number
computations and cryptographic algorithms.

/usr/lib64/libnssdbm3.chk Signature (DSA with 2048-bit key and SHA-256) value of the
associated library for integrity check during the power-on.

/usr/lib64/libsoftokn3.chk Signature (DSA with 2048-bit key and SHA-256) value of the
associated library for integrity check during the power-on.

/usr/lib64/libfreeblpriv3.chk Signature (DSA with 2048-bit key and SHA-256) value of the
associated library for integrity check during the power-on.

Figure 1 shows the logical block diagram of the module executing in memory on the host system.
The logical cryptographic boundary is indicated with a dashed colored box.

Figure 1: Logical cryptographic boundary.

2.4 Definition of the Physical Cryptographic Boundary

The physical cryptographic boundary of the module is defined as the hard enclosure of the host
system on which the module runs. Figure 2 depicts the hardware block diagram. The physical hard
enclosure is indicated by the dashed colored line. No components are excluded from the
requirements of FIPS 140-2.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 9 of 43

Figure 2: Hardware block diagram.

2.5 Tested Operational Environments

The module was tested on the environments/platforms listed in Table 3. The tested operational
environment was controlled and the laboratory had full and exclusive access to the environment and
module during the testing procedures.

Table 3: Tested operational environments.

Operating
System

Processor Hardware

Amazon Linux 2 Intel ® Xeon ® E5
(Broadwell) x86_64bit with
PAA (i.e., AES-NI)

Amazon EC2 i3.metal

512 GiB system memory

13.6 TiB SSD storage + 8 GiB SSD boot disk

25 Gbps Elastic Network Adapter

Amazon Linux 2 Intel ® Xeon ® E5
(Broadwell) x86_64bit
without PAA (i.e., AES-NI)

Amazon EC2 i3.metal

512 GiB system memory

13.6 TiB SSD storage + 8 GiB SSD boot disk

25 Gbps Elastic Network Adapter

2.6 Modes of Operation

The module supports two modes of operation.

• In "FIPS mode" (the Approved mode of operation), only approved or allowed security
functions with sufficient security strength are offered by the module.

• In "non-FIPS mode" (the non-Approved mode of operation), non-approved security functions
are offered by the module.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 10 of 43

The module enters the operational mode after Power-On Self-Tests (POST) succeed. Once the module
is operational, the mode of operation is implicitly assumed depending on the security function
invoked and the security strength1 of the cryptographic keys chosen for the service.

If the POST or the Conditional Tests fail (Section 9), the module goes into the error state. The status
of the module can be determined by the availability of the module. If the module is available, then it
had passed all self-tests. If the module is unavailable, it is because any self-test failed, and the
module has transitioned to the error state.

Keys and Critical Security Parameters (CSPs) used or stored in FIPS mode shall not be used in non-
FIPS mode, and vice versa.

1 See Section 5.6.1 in [SP800-57] for a definition of “security strength”.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 11 of 43

3 Module Ports and Interfaces

As a Software module, the module does not have physical ports. The operator can only interact with
the module through the API provided by the module. Thus, the physical ports within the physical
boundary are interpreted to be the physical ports of the hardware platform on which the module runs
and are directed through the logical interfaces provided by the software.

The logical interfaces are the API through which applications request services and receive output
data through return values or modified data referenced by pointers; database files in the file system,
and environment variables. The module distinguishes between data input, control input, data output
and status output by using different function arguments for each of those paths. In this manner, the
logical paths followed by data and control entering the module and data and status exiting the
module are not connected. The module does not use the same buffer for input and output. After the
input buffer that holds security-related data is no longer used, the module zeroizes the memory area
occupied by the buffer, thus preventing leakage of sensitive information in case the same memory
area is later utilized.

Table 4 summarizes the logical interfaces and the power input.

Table 4: Ports and interfaces.

Logical Interface Description

Data Input API input parameters and database files in file
system.

Data Output API output parameters and database files in file
system.

Control Input API function calls and environment variables.

Status Output API return codes and status parameters.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 12 of 43

4 Roles, Services and Authentication

4.1 Roles

The module supports the following roles:

• User role: performs all services (in both FIPS mode and non-FIPS mode of operation), except
module installation and configuration. This role is assumed by the calling application
accessing the module. The user role is also responsible for the retrieval, updating and
deletion of keys from the private key database.

• Crypto Officer role: performs module installation and configuration. In addition, the Crypto
Office can access status services and other services that do not utilize secret/private keys and
other CSPs associated with the User, such as message digest and random number generation.
The Crypto Office is responsible for access control to the module before and after installation,
including management of physical access to the general-purpose computer, execution of the
module code and management of the security facilities provided by the operating system.

4.2 Role Assumption and Operator Authentication

The module implements role-based authentication.

The Crypto Officer role is implicitly assumed by an operator while installing the module by following
the instructions in Section 10.2 and while performing any other services available to the Crypto
Officer on the module.

For the User role, the module implements a password-based authentication mechanism. To perform
any security services under the User role, an operator must log into the module and complete an
authentication procedure using the password information unique to the User role operator. The
password is passed to the module via the API function as an input argument and this password is not
displayed. The return value of the function is the only feedback from the authentication mechanism,
and does not contain any information that could be used to guess or determine the User's password.
The password is initialized by the Crypto Officer role as part of the module initialization process, and
can be changed by the User role operator.

If a User-role service is called before the operator is authenticated, it returns the
CKR_USER_NOT_LOGGED_IN error code. The operator must call the FC_Login function to provide the
required authentication.

Once a password has been established for the module, the user is allowed to use the security
services if and only if the user is successfully authenticated to the module. Password establishment
and authentication are required for the operation of the module. When the module is powered off,
the result of the previous authentication is cleared. The user needs to be re-authenticated in a
subsequent power-on.

4.2.1 Strength of the Operator Authentication Mechanism

The module imposes the following requirements on the password. These requirements are enforced
by the module on password initialization or change.

• The password must be at least seven characters long.

• The password must consist of characters extracted from three or more character classes. The
character classes are:

1. Digits (0-9).

2. ASCII lowercase letters (a-z).

3. ASCII uppercase letters (A-Z).

4. ASCII non-alphanumeric characters (space and other ASCII special characters such as
'$', '!').

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 13 of 43

5. Non-ASCII characters (Latin characters such as 'é', 'ß'; Greek characters such as 'Ω',
'θ'; other non-ASCII special characters such as '¿').

If an ASCII uppercase letter is the first character of the password, the uppercase letter is not counted
toward its character class. Similarly, if a digit is the last character of the password, the digit is not
counted toward its character class.

To estimate the maximum probability that a random guess of the password will succeed, two
assumptions are considered.

• The characters of the password are independent with each other.

• The password contains the smallest combination of the character classes, namely five digits,
one ASCII lowercase letter and one ASCII uppercase letter.

The probability of guessing one digit is 1/10. The probability of guessing 5 digits is thus (1/10)ˆ5. The
probability of guessing one lowercase letter is the same as guessing one uppercase letter, which is
1/26 in the ASCII alphabet.

In the aforementioned configuration, the probability of guessing every character successfully in the
7-character password (i.e., the probability that a random guess of the password will succeed) is
(1/10)ˆ5 * (1/26) * (1/26) = 1/67,600,000. . This probability is less than the required threshold of
1/1,000,000 chance that a random attempt will succeed in obtaining authentication.

After each failed authentication attempt, the NSS cryptographic module inserts a one-second delay
before returning the control to the caller, and the module allows at most 60 authentication attempts
during a one-minute period. Therefore, the probability of a successful random guess of the password

during a one-minute period is less than or equal to 60 * 1/67,600,000  0.089 * (1/100,000). This
probability figure is smaller than the required probability threshold of 1/100,000 chance that, for
multiple attempts to use the authentication mechanism during a one-minute period, a random
attempt will success in obtaining authentication.

4.3 Services

The module supports services for the Crypto Officer and User roles. The Crypto Officer role requires
no operator authentication, whereas the User role requires operator authentication. Crypto Officer
services do not access secret/private keys or other CSPs associated with the User role.

4.3.1 Calling Convention of API Functions

The module has a set of API functions denoted by FC_xxx. The services offered by the module are
associated with one or more of these API functions.

Among the module's API functions, only FC_GetFunctionList is exported and therefore callable by its
name. All the other API functions must be called via the function pointers returned by
FC_GetFunctionList. FC_GetFunctionList returns a CK_FUNCTION_LIST structure containing function
pointers named C_xxx, such as C_Initialize and C_Finalize. The C_xxx function pointers in the
CK_FUNCTION_LIST structure returned by FC_GetFunctionList point to the FC_xxx functions.

For instance, to call the FC_Initialize function that initializes the module library, first a call to
FC_GetFunctionList function is performed. The CK_FUNCTION_LIST structure is returned, containing
C_Initialize pointer. This C_Initialize pointer will then point to the desired FC_Initialize function. This
convention is utilized in Table 5 and Table 6 wherein function names are listed.

The service tables next indicate the service name, the associated function returned by C_Initialize
pointer, a description of the service, keys and CSPs touched by the service as applicable, and the
type of access to these keys and CSPs. The service tables use the following convention when
specifying the access permissions that the module has for each CSP or key.

• Create (C): the calling application can create a new CSP.
• Read (R): the calling application can read the CSP.
• Update (U): the calling application can write a new value to the CSP.

• Zeroize (Z): the calling application can zeroize the CSP.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 14 of 43

• N/A: the calling application does not access any CSP or key during its operation.

For the “Role” column, U indicates the User role, and CO indicates the Crypto Officer role. A
checkmark symbol marks which role has access to that service.

4.3.2 Services in the FIPS-Approved Mode of Operation

Table 5 provides a full description of FIPS Approved services and the non-Approved but Allowed
services provided by the module in the FIPS-approved mode of operation and lists the roles allowed
to invoke each service. If the service does not require authentication, i.e., if the service is non-
authenticated, this characteristic will be indicated in the service name. For services in which some
functions are authenticated and other are not, the functions that are not authenticated will be
indicated in the Description column.

Note: the module does not implement the TLS protocol, but rather the cryptographic algorithms
(such as the TLS KDF) that can be used to implement the TLS protocol by user applications.

Table 5: Services in the FIPS-approved mode of operation.

Service Name Function Service Description Role Keys and CSPs Access

U C
O

Get Function
List (non-
authenticated)

FC_GetFunctionList Return a pointer to the list of
function pointers for the
operational mode.

  None N/A

Module
Initialization
(non-
authenticated)

FC_InitToken Initialize or re-initialize a token.   User password,
any key type

Z

FC_InitPIN Initialize the user's password, i.e.,
set the user's initial password

  User password C, R, U

General
Purpose (non-
authenticated)

FC_Initialize Initialize the module library   None N/A

FC_Finalize Finalize (shut down) the module
library

  Any key type Z

FC_GetInfo Obtain general information about
the module library

  None N/A

Slot and Token
Management

FC_GetSlotList Obtain a list of slots in the
system.

(non-authenticated)

  None N/A

FC_GetSlotInfo Obtain information about a
particular slot.

(non-authenticated)

  None N/A

FC_GetTokenInfo Obtain information about the
token (this function provides the
Show Status service).

(non-authenticated)

  None N/A

FC_GetMechanismList Obtain a list of mechanisms
(cryptographic algorithms)
supported by a token.

(non-authenticated)

  None N/A

FC_GetMechanismInf
o

Obtain information about a
particular mechanism.

(non-authenticated)

  None N/A

FC_SetPIN Change the user's password  User password R, U

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 15 of 43

Service Name Function Service Description Role Keys and CSPs Access

U C
O

Session
Management
(non-
authenticated)

FC_OpenSession Open a connection (session)
between an application and a
particular token

  None N/A

FC_CloseSession Close a session   Any key type for
the session

Z

FC_CloseAllSessions Close all sessions with a token   Any key type Z

FC_GetSessionInfo Obtain information about the
session (this function provides
the Show Status service)

  None N/A

FC_GetOperationStat
e

Save the state of the
cryptographic operations in a
session (this function is only
implemented for message digest
operations)

  None N/A

FC_SetOperationStat
e

Restore the state of the
cryptographic operations in a
session (this function is only
implemented for message digest
operations)

  None N/A

FC_Login Log into a token   User Password C, R, U

FC_Logout Log out from a token   None N/A

Object
Management

FC_CreateObject Create a new object  Any key type C, U

FC_CopyObject Create a copy of an object  Any key type C, R, U

FC_DestroyObject Destroy an object  Any key type Z

FC_GetObjectSize Obtain the size of an object in
bytes

 Any key type R

FC_GetAttributeValue Obtain an attribute value of an
object

 Any key type R

FC_SetAttributeValue Modify an attribute value of an
object

 Any key type R, U

FC_FindObjectsInit Initialize an object search
operation

 None N/A

FC_FindObjects Continue an object search
operation

 Any key type
matching the
search criteria

R

FC_FindObjectsFinal Finish an object search operation  None N/A

Encryption and
Decryption

FC_EncryptInit Initialize an encryption operation  AES/Triple-DES
key

R

FC_Encrypt Encrypt single-part data  AES/Triple-DES
key

R

FC_EncryptUpdate Continue a multiple-part
encryption operation

 AES/Triple-DES
key

R

FC_EncryptFinal Finish a multiple-part encryption
operation

 AES/Triple-DES
key

R

FC_DecryptInit Initialize a decryption operation  AES/Triple-DES
key

R

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 16 of 43

Service Name Function Service Description Role Keys and CSPs Access

U C
O

FC_Decrypt Decrypt single-part encrypted
data

 AES/Triple-DES
key

R

FC_DecryptUpdate Continue a multiple-part
decryption operation

 AES/Triple-DES
key

R

FC_DecryptFinal Finish a multiple-part decryption
operation

 AES/Triple-DES
key

R

Message Digest FC_DigestInit Initialize a message digesting
operation.

(non-authenticated)

  None N/A

FC_Digest Digest single-part data.

(non-authenticated)

  None N/A

FC_DigestUpdate Continue a multiple-part
digesting operation.

(non-authenticated)

  None N/A

FC_DigestKey Continue a multiple-part
message-digesting operation by
digesting the value of a secret
key as part of the data already
digested

 HMAC key R

FC_DigestFinal Finish a multiple-part digesting
operation.

(non-authenticated)

  None N/A

Signature
Generation and
Verification

FC_SignInit Initialize a signature operation  DSA/ECDSA/RSA
private key,
HMAC key

R

FC_Sign Sign single-part data  DSA/ECDSA/RSA
private key,
HMAC key

R

FC_SignUpdate Continue a multiple-part
signature operation

 DSA/ECDSA/RSA
private key,
HMAC key

R

FC_SignFinal Finish a multiple-part signature
operation

 DSA/ECDSA/RSA
private key,
HMAC key

R

FC_SignRecoverInit Initialize a signature operation,
wherein the data can be
recovered from the signature

 DSA/ECDSA/RSA
private key

R

FC_SignRecover Sign single-part data, wherein the
data can be recovered from the
signature

 DSA/ECDSA/RSA
private key

R

FC_VerifyInit Initialize a verification operation  DSA/ECDSA/RSA
public key, HMAC
key

R

FC_Verify Verify a signature on single-part
data

 DSA/ECDSA/RSA
public key, HMAC
key

R

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 17 of 43

Service Name Function Service Description Role Keys and CSPs Access

U C
O

FC_VerifyUpdate Continue a multiple-part
verification operation

 DSA/ECDSA/RSA
public key, HMAC
key

R

FC_VerifyFinal Finish a multiple-part verification
operation

 DSA/ECDSA/RSA
public key, HMAC
key

R

FC_VerifyRecoverInit Initialize a verification operation,
wherein the data is recovered
from the signature

 DSA/ECDSA/RSA
public key

R

FC_VerifyRecover Verify a signature on single-part
data, wherein the data is
recovered from the signature

 DSA/ECDSA/RSA
public key

R

Dual Function
Cryptographic
Operations

FC_DigestEncryptUpd
ate

Continue a multiple-part
digesting and encryption
operation

 AES/Triple-DES
key

R

FC_DecryptDigestUpd
ate

Continue a multiple-part
decryption and digesting
operation

 AES/Triple-DES
key

R

FC_SignEncryptUpdat
e

Continue a multiple-part signing
and encryption operation

 DSA/ECDSA/RSA
private key,
HMAC key,
AES/Triple-DES
key

R

FC_DecryptVerifyUpd
ate

Continue a multiple-part
decryption and verify operation

 DSA/ECDSA/RSA
public key, HMAC
key, AES/Triple-
DES key

R

Key
Management

FC_GenerateKey Generate a secret key (also used
by TLS implementations to
generate a pre-master secret)

 AES/Triple-
DES/HMAC key,
TLS pre-master
secret

C, U

FC_GenerateKeyPair Generate a public/private key
pair (this function performs the
pair-wise consistency tests)

 DSA/ECDSA/RSA
key pair, Diffie-
Hellman/EC
Diffie-Hellman
key pair

C, U

FC_WrapKey Wrap (encrypt) a key using
SP800-38F AES key wrapping,
RSA encryption

 AES key, RSA
public key,
wrapped key (of
any key type)

R

FC_UnwrapKey Unwrap (decrypt) a key using
SP800-38F AES key unwrapping,
RSA decryption

 AES key, RSA
private key,
wrapped key (of
any key type)

R, U

FC_DeriveKey Compute the shared secret (TLS
pre-master secret)

Derive the TLS master secret
(from the TLS master secret)

Derive a key from TLS master
secret

 TLS pre-master
secret

TLS master secret

Derived key (AES,
Triple-DES,
HMAC)

C, R, U

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 18 of 43

Service Name Function Service Description Role Keys and CSPs Access

U C
O

TLS KDF internal
state

Random
Number
Generation
(non-
authenticated)

FC_SeedRandom Mix in additional seed material to
the random number generator

  Entropy input
string, seed,
DRBG V and C
values

R, U

FC_GenerateRandom Generate random data (this
function performs the continuous
random number generator test)

  Random data,
DRBG V and C
values

R, U

Parallel
Function
Management

FC_GetFunctionStatu
s

A legacy function, which simply
returns the value 0x00000051
(function not parallel)

 None N/A

FC_CancelFunction A legacy function, which simply
returns the value 0x00000051
(function not parallel)

 None N/A

Self-Tests (non-
authenticated)

N/A Self-tests for all cryptographic
functions, performed
automatically when loading the
module

  DSA 2048-bit
public key for
module integrity
test

R

Zeroization FC_DestroyObject

FC_InitToken

FC_Finalize

FC_CloseSession

FC_CloseAllSessions

Zeroization of keys and CSPs; all
CSPs are automatically zeroized
when freeing the cipher handle

 Any keys, CSPs Z

Module
Installation
(non-
authenticated)

N/A Installation of the module  None N/A

Module
Configuration
(non-
authenticated)

N/A Configuration of the module  None N/A

4.3.3 Services in the Non-FIPS-Approved Mode of Operation

Table 6 presents the services only available in non-FIPS-approved mode of operation, as these
services invoke algorithms, or use keys and elliptic curves not listed in Table 7. The associated
functions are the same as the ones listed in Table 5, however the service names specify the
conditions under which those services are made available only in the non-FIPS-approved mode of
operation. If the service does not require authentication, i.e., if the service is non-authenticated, this
characteristic will be indicated in the service name. For services in which some functions are
authenticated and other are not, the functions that are not authenticated will be indicated in the
Description column.

Invoking any of the services in Table 6 will implicitly switch the module to the non-FIPS-approved
mode.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 19 of 43

Table 6: Services in the non-FIPS approved mode of operation.

Service Name Function Service Description Role Keys Access

U C
O

Encryption and
Decryption
using
symmetric
algorithms not

listed in Table
7 (e.g.,
Camellia, DES,
RC2, RC4, etc.

See Table 9)

FC_EncryptInit Initialize an encryption operation  Symmetric key R

FC_Encrypt Encrypt single-part data  Symmetric key R

FC_EncryptUpdate Continue a multiple-part
encryption operation

 Symmetric key R

FC_EncryptFinal Finish a multiple-part encryption
operation

 Symmetric key R

FC_DecryptInit Initialize a decryption operation  Symmetric key R

FC_Decrypt Decrypt single-part encrypted
data

 Symmetric key R

FC_DecryptUpdate Continue a multiple-part
decryption operation

 Symmetric key R

FC_DecryptFinal Finish a multiple-part decryption
operation

 Symmetric key R

Message Digest
with MD2, MD5

FC_DigestInit Initialize a message digesting
operation.

(non-authenticated)

  None N/A

FC_Digest Digest single-part data.

(non-authenticated)

  None N/A

FC_DigestUpdate Continue a multiple-part
digesting operation.

(non-authenticated)

  None N/A

FC_DigestKey Continue a multiple-part
message-digesting operation by
digesting the value of a secret
key as part of the data already
digested

 MAC Key R

FC_DigestFinal Finish a multiple-part digesting
operation.

(non-authenticated)

  None N/A

Signature
Generation and
Verification with
RSA, DSA,
ECDSA key
sizes and
elliptic curves
not listed in
Table 7;
signature
generation with
SHA-1

FC_SignInit Initialize a signature operation  DSA/ECDSA/RSA
private key,
HMAC key

R

FC_Sign Sign single-part data  DSA/ECDSA/RSA
private key,
HMAC key

R

FC_SignUpdate Continue a multiple-part
signature operation

 DSA/ECDSA/RSA
private key,
HMAC key

R

FC_SignFinal Finish a multiple-part signature
operation

 DSA/ECDSA/RSA
private key,
HMAC key

R

FC_SignRecoverInit Initialize a signature operation,
wherein the data can be
recovered from the signature

 DSA/ECDSA/RSA
private key

R

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 20 of 43

Service Name Function Service Description Role Keys Access

U C
O

FC_SignRecover Sign single-part data, wherein the
data can be recovered from the
signature

 DSA/ECDSA/RSA
private key

R

FC_VerifyInit Initialize a verification operation  DSA/ECDSA/RSA
public key, HMAC
key

R

FC_Verify Verify a signature on single-part
data

 DSA/ECDSA/RSA
public key, HMAC
key

R

FC_VerifyUpdate Continue a multiple-part
verification operation

 DSA/ECDSA/RSA
public key, HMAC
key

R

FC_VerifyFinal Finish a multiple-part verification
operation

 DSA/ECDSA/RSA
public key, HMAC
key

R

FC_VerifyRecoverInit Initialize a verification operation,
wherein the data is recovered
from the signature

 DSA/ECDSA/RSA
public key

R

FC_VerifyRecover Verify a signature on single-part
data, wherein the data is
recovered from the signature

 DSA/ECDSA/RSA
public key

R

Dual Function
Cryptographic
Operations
using any
algorithm, key
sizes or elliptic
curves not

listed in Table
7

FC_DigestEncryptUpd
ate

Continue a multiple-part
digesting and encryption
operation

 Symmetric key R

FC_DecryptDigestUpd
ate

Continue a multiple-part
decryption and digesting
operation

 Symmetric key R

FC_SignEncryptUpdat
e

Continue a multiple-part signing
and encryption operation

 DSA/ECDSA/RSA
private key, MAC
key, ymmetric
key

R

FC_DecryptVerifyUpd
ate

Continue a multiple-part
decryption and verify operation

 DSA/ECDSA/RSA
public key, MAC
key, symmetric
key

R

Key
Management
using any
algorithm, key
sizes or elliptic
curves not
listed in Table
7(including J-
PAKE); key
generation not
compliant with
FIPS 186-4

FC_GenerateKey Generate a secret key (also used
by TLS implementations to
generate a pre-master secret)

 Symmetric key or
key material

C, U

FC_GenerateKeyPair Generate a public/private key
pair (this function performs the
pair-wise consistency tests)

 aymmetric key
pair

C, U

FC_WrapKey Wrap (encrypt) a key using
SP800-38F AES key wrapping,
RSA encryption

 Symmetric,
asymmetric key
(key encryption
key), wrapped
key (of any key
type)

R

FC_UnwrapKey Unwrap (decrypt) a key using
SP800-38F AES key unwrapping,
RSA decryption

 Symmetric,
asymmetric key
(key encryption
key), wrapped

R, U

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 21 of 43

Service Name Function Service Description Role Keys Access

U C
O

key (of any key
type)

FC_DeriveKey Compute the shared secret (TLS
pre-master secret)

Derive the TLS master secret
(from the TLS master secret)

Derive a key from TLS master
secret

 TLS pre-master
secret, TLS
master secret,

derived key (AES,
Triple-DES,
HMAC, other
algorithms not

listed in Table 7)

C, R, U

4.4 Algorithms

The module implements cryptographic algorithms that are used by the services provided by the
module. The cryptographic algorithms that are approved to be used in the FIPS mode of operation
are tested and validated by the CAVP. No parts of the Transport Layer Security (TLS) protocol have
been tested by the CAVP, but for the key derivation function (KDF).

The module supports different AES implementations based on the underlying platform's capability
(per the tested operational environment in Table 3). The module supports the use of AES-NI from the
Intel architecture. When the AES-NI is enabled in the operating environment, the module performs
the AES operations supported by the AES-NI instructions. When the AES-NI is disabled in the
operating environment, the module performs the AES operations using the C implementation.

The AES implementations that use the AES-NI instructions and their related algorithms have been
tested by CAVS and subjected to functional testing. Although the module offers different
implementations for AES, only one implementation for the respective algorithm will ever be available
for AES cryptographic services at run-time.

Table 7, Table 8 and Table 9 present the cryptographic algorithms in specific modes of operation.
These tables include the CAVP certificates for different implementations, the algorithm name,
respective standards, the available modes and key sizes wherein applicable, and usage. Information
from certain columns may be applicable to more than one row.

Not all algorithms present in the listed certificates are available in the FIPS-approved mode of
operation of this module.

4.4.1 FIPS-Approved Algorithms

Table 7 lists the cryptographic algorithms that are approved to be used in the FIPS mode of
operation.

Table 7: FIPS-approved cryptographic algorithms.

Algorithm Standard Mode/Method Key size Use CAVP Cert#

AES [FIPS197]

[SP800-38A]

CBC, ECB, CTR 128, 192 and 256
bits

Data
Encryption and
Decryption

#C803 (C)

#C804 (AES-NI)

[FIPS197]

[SP800-38F]

KW 128, 192, 256 bits Key Wrapping

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11158

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 22 of 43

Algorithm Standard Mode/Method Key size Use CAVP Cert#

DSA [FIPS 186-4] L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Key Pair
Generation

#C803 (C)

SHA-1, SHA-224,
SHA-256,
SHA-384,
SHA-512

L=1024, N=160 Domain
Parameter
Verification

SHA-224,
SHA-256,
SHA-384,
SHA-512

L=2048, N=224

SHA-256,
SHA-384,
SHA-512

L=2048, N=256;
L=3072, N=256

SHA-224,
SHA-256,
SHA-384,
SHA-512

L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Signature
Generation

SHA-1, SHA-224,
SHA-256,
SHA-384,
SHA-512

L=1024, N=160,
L=2048, N=224;
L=2048, N=256;
L=3072, N=256

Signature
Verification

DRBG [SP800-90A] HASH_DRBG
with SHA-256,
without
Prediction
Resistance

n/a Random
Number
Generation

#C803 (C)

ECDSA [FIPS186-4] Extra bits P-256, P-384,
P-521

Key Pair
Generation

#C803 (C)

 P-256, P-384,
P-521

Public Key
Verification

SHA-224,
SHA-256,
SHA-384,
SHA-512

P-256, P-384,
P-521

Signature
Generation

SHA-1, SHA-224,
SHA-256,
SHA-384,
SHA-512

P-256, P-384,
P-521

Signature
Verification

KAS ECC
Component

[SP800-56A] ECC Ephemeral
Unified scheme

P-256 (EC), P-384
(ED), P-521 (EE)

EC Diffie-
Hellman
Shared Secret
Computation

#C803 (C)

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 23 of 43

Algorithm Standard Mode/Method Key size Use CAVP Cert#

KAS FFC
Component

[SP800-56A] FFC dhEphem
scheme

p=2048, q=224
(FB);

p=2048, q=256
(FC)

Diffie-Hellman
Shared Secret
Computation

#C803 (C)

HMAC [FIPS198-1] SHA-1, SHA-224,
SHA-256,
SHA-384,
SHA-512

112 bits or
greater

Message
Authentication
Code

#C803 (C)

KDF
Component in

TLS v1.0/1.1
TLS v1.2

[SP800-135] SHA-256,
SHA-384,
SHA-512

 Key Derivation #C803 (C)

RSA [FIPS186-4] X9.31 2048 and 3072
bits

Key Pair
Generation

#C803 (C)

PKCS#1v1.5
with SHA-224,
SHA-256,
SHA-384,
SHA-512

2048 and 3072
bits

Digital
Signature
Generation

PKCS#1v1.5
with SHA-1,
SHA-224,
SHA-256,
SHA-384,
SHA-512

1024, 2048, and
3072 bits

Signature
Verification

[FIPS186-2] PKCS#1v1.5
with SHA-224,
SHA-256,
SHA-384,
SHA-512

4096 Digital
Signature
Generation

SHS [FIPS180-4] SHA-1, SHA-224,
SHA-256,
SHA-384,
SHA-512

N/A Message
Digest

#C803 (C)

Triple-DES [SP800-67]

[SP800-38A]

CBC, ECB, CTR 192 bits

Data
Encryption and
Decryption

#C803 (C)

KTS [SP800-38F] AES-KW 128, 192, and 256
bits

Key Wrapping #C803 (C)

#C804 (AES-NI)

CKG IG D.12

[SP800-133]

 Defined by caller Key Generation Vendor Affirmed

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11158

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 24 of 43

4.4.2 Non-Approved-but-Allowed Algorithms

Table 8 lists the non-Approved-but-Allowed cryptographic algorithms provided by the module that
are allowed to be used in the FIPS mode of operation.

Table 8: Non-Approved-but-allowed cryptographic algorithms.

Algorithm Usage

RSA Key Wrapping with
key size between 2048
bits and 15360 bits (or
more)

Key wrapping, key establishment methodology provides between 112
and 256 bits of encryption strength.

Diffie-Hellman with key
size between 2048 bits
and 15360 bits (or
more)

Shared secret computation provides between 112 and 256 bits of
encryption strength. Allowed by IG A.14.

NDRNG Used for seeding NIST SP 800-90A DRBG.

MD5 Message digest used in TLS only.

4.4.3 Non-Approved Algorithms

Table 9 lists the cryptographic algorithms that are not allowed to be used in the FIPS mode of
operation. Use of any of these algorithms (and corresponding services in Table 6) will implicitly
switch the module to the non-Approved mode.

Table 9: Non-FIPS approved cryptographic algorithms.

Algorithm Usage

AES-CTS Encryption/decryption

AES-GCM Encryption/decryption, non-compliant with IG A.5. Tested with CAVP
Certs. #C803, #C804

Camellia Encryption/decryption

DES Encryption/decryption

Diffie-Hellman Shared secret computation using keys of length not listed in Table 7

DSA Parameter/Key generation/Signature generation with keys not listed in
Table 7

EC Diffie-Hellman Shared secret computation using curves not listed in Table 7

ECDSA Key generation/Signature generation with curves not listed in Table 7

J-PAKE Key agreement

Key Wrapping Key wrapping methods not compliant with SP800-38F

MD2 Hash function

MD5 Hash function

RC2 Encryption/decryption

https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?product=11158

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 25 of 43

Algorithm Usage

RC4 Encryption/decryption

RC5 Encryption/decryption

RSA Key generation/Signature generation/Signature verification with keys of
length not listed in Table 7

SEED Encryption/decryption

SHA-1 Signature generation

Two-key Triple-DES Encryption/decryption, key wrapping

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 26 of 43

5 Physical Security

The module is comprised of software only and thus this Security Policy does not claim any physical
security.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 27 of 43

6 Operational Environment

6.1 Applicability

The module operates in a modifiable operational environment per FIPS 140-2 Security Level 1
specifications. The module runs on the Amazon Linux 2 operating system executing on the hardware
specified in Section 2.5.

6.2 Policy

The operating system is restricted to a single operator mode of operation (i.e., concurrent operators
are explicitly excluded by the operating system).

The application that makes calls to the modules is the single user of the modules, even when the
application is serving multiple clients.

In operational mode, the ptrace(2) system call, the gdb(1) debugger and strace(1) shall not be used.
In addition, other tracing mechanisms offered by the Linux environment, such as ftrace or
systemtap, shall not be used.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 28 of 43

7 Cryptographic Key Management

Table 10 summarizes the public keys, secret/private keys and other CSPs that are used by the
cryptographic services implemented in the module. The table describes the use of each key/CSP and,
as applicable, how they are generated or established, their method of entry and output of the
module, their storage location, and the method for zeroizing the key/CSP.

All key and CSP storage is done in plaintext.

Table 10: Lifecycle of public keys, secret/private keys and other Critical Security Parameters (CSPs).

Name Use Generation/

Establishment

Entry/

Output

Type Storage Zeroization

AES Key Encryption,
decryption.

Generated by
SP800-90A DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

AES key,
all modes
and
lengths
per Table
7

RAM or
key
database

Automatically
zeroized when
freeing the
cipher handle

Triple-
DES
Keys

Encryption,
decryption.

Generated by
SP800-90A DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

Triple-DES
key, all
modes and
lengths
per Table
7

RAM or
key
database

Automatically
zeroized when
freeing the
cipher handle

HMAC
Key

MAC
generation
and
verification

Generated by
SP800-90A DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

HMAC keys
of length >
112 bits

RAM or
key
database

Automatically
zeroized when
freeing the
cipher handle

RSA
public
and
private
key

RSA
signature
generation
and
verification.

Key
wrapping.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800-90A DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

RSA keys
of length
1024
(sigver),
2048,
3072 bits
(or more
as allowed
for key
wrapping)

RAM or
key
database

Automatically
zeroized when
freeing the
cipher handle

DSA
public
and
private
key

DSA
signature
generation
and
verification.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800-90A DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using

DSA keys
of length
1024
(sigver),
2048,
3072 bits

RAM or
key
database

Automatically
zeroized when
freeing the
cipher handle

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 29 of 43

Name Use Generation/

Establishment

Entry/

Output

Type Storage Zeroization

FC_WrapKe
y.

ECDSA
public
and
private
key

ECDSA
signature
generation
and
verification.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800-90A DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

ECDSA
keys for
curves
P-256,
P-384,
P-521

RAM or
key
database

Automatically
zeroized when
freeing the
cipher handle

Diffie-
Hellman
public
and
private
key

Shared
secret
computation
.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800- 90A
DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

Key
lengths
2048 bits
and 15360
bits (or
more)

RAM Automatically
zeroized when
freeing the
cipher handle

EC Diffie-
Hellman
public
and
private
key

Shared
secret
computation
.

Keys are
generated using
FIPS 186-4 and
the random value
used in the key
generation is
obtained from
SP800- 90A
DRBG.

Either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

Curves
P-256,
P-384,
P-521

RAM Automatically
zeroized when
freeing the
cipher handle

TLS pre-
master
secret

Establishme
nt of
encrypted
session as
input to the
derivation of
the master
secret.

Generated during
the shared secret
computation
when using Diffie-
Hellman or EC
Diffie-Hellman
key exchange.

Generated by TLS
client as output
from DRBG when
using RSA key
exchange.

Entry: if
received by
module as
TLS server,
wrapped
with
server’s
public RSA
key;
otherwise
no entry.

Output: if
generated
by module
as TLS
client,
wrapped
with
server’s
public RSA
key;
otherwise,
no output.

Length
defined by
ciphersuite
(applicatio
n)

RAM Automatically
zeroized when
freeing the
cipher handle

TLS
Master
secret

Establishme
nt of
encrypted
session.

Derived from pre-
master secret.

N/A 384 bits RAM Automatically
zeroized when
freeing the
cipher handle

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 30 of 43

Name Use Generation/

Establishment

Entry/

Output

Type Storage Zeroization

Entropy
input
string

Entropy
input strings
used to
construct
the seed for
the DRBG.

Obtained from
NDRNG.

N/A 384 bits RAM Automatically
zeroized when
freeing the
DRBG handle

DRBG
Internal
state (V,
C)

Used
internally by
DRBG. Used
to generate
random bits.

During DRBG
initialization.

N/A Internal
state
values

RAM Automatically
zeroized when
freeing the
DRBG handle

User
Passwor
d

User
authenticati
on

Supplied by the
calling
application.

Entry:
received
from the
calling
application
through API
parameters
.

No output.

See
Section
4.2.1

RAM or

key data
base in
salted
form

Automatically
zeroized when
the module is
reinitialized or
overwritten
when the user
changes its
password

AES
derived
key

Encryption,
decryption.

Generated
internally by the
module (from the
[SP800-135] TLS
KDF).

No entry.

Output
either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

AES key
with
modes and
lengths in
Table 7

RAM Automatically
zeroized when
freeing the
cipher handle

Triple-
DES
derived
key

Encryption,
decryption

Generated
internally by the
module (from the
[SP800-135] TLS
KDF).

No entry.

Output
either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

Triple-DES
key with
modes and
lengths in
Table 7

RAM Automatically
zeroized when
freeing the
cipher handle

HMAC
derived
key

MAC
generation
and
verification

Generated
internally by the
module (from the
[SP800-135] TLS
KDF).

No entry.

Output
either in
plaintext or
Encrypted
through
key
wrapping
using
FC_WrapKe
y.

HMAC key
with
lengths in
Table 7

RAM Automatically
zeroized when
freeing the
cipher handle

TLS KDF
internal
state

Values of
the TLS KDF

SP800-135 TLS
KDF

N/A Internal
state
values

RAM Automatically
zeroized when

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 31 of 43

Name Use Generation/

Establishment

Entry/

Output

Type Storage Zeroization

internal
state

freeing the KDF
handle

7.1 Random Number Generation

The module provides a DRBG compliant with [SP800-90A] for the creation of key components of
asymmetric keys, and random number generation. The DRBG implements a HASH_DRBG mechanism
with SHA-256 without prediction resistance.

The DRBG is initialized during module initialization and seeded from the NDRNG from /dev/urandom.
The NDRNG is provided by the operational environment (i.e., Linux RNG), which is within the
module’s physical boundary but outside of the module’s logical boundary. The NDRNG provides at
least 256 bits of entropy to the DRBG.

Reseeding is performed by pulling more data from /dev/urandom. Applications using the module
should periodically reseed the module's random number generator with entropy by calling
FC_SeedRandom. After 2⁴⁸ calls to the random number generator, the module reseeds the DRBG
automatically.

The module performs the DRBG health testing as specified in Section 11.3 of NIST SP800-90A. The
underlying operating system performs the continuous test on the NDRNG.

7.2 Key Generation

For generating RSA, DSA, ECDSA, Diffie-Hellman and EC Diffie-Hellman keys, the module implements
asymmetric key generation services compliant with [FIPS186-4] and using a DRBG compliant with
[SP800-90A]. The random value used in asymmetric key generation is obtained from the DRBG. In
accordance with FIPS 140-2 IG D.12, the cryptographic module performs Cryptographic Key
Generation (CKG) for asymmetric keys as per SP800-133 (vendor affirmed).

Symmetric keys are derived from the shared secret established by Diffie-Hellman and EC Diffie-
Hellman in a manner that is compliant to NIST SP 800-135 for TLS KDF. The module also generates
symmetric key through the FC_GenerateKey() function using the random numbers from the SP 800-
90A DRBG.

The public and private key pairs used in the Diffie-Hellman and EC Diffie-Hellman shared secret
computation schemes are generated internally by the module using the same DSA and ECDSA key
generation compliant with [FIPS186-4] and with [SP800-56A].

7.3 Key Entry and Output

The module does not support manual key entry or intermediate key generation output. In addition,
the module does not produce key output outside its physical boundary. The keys can be entered or
output from the module in either plaintext form via API parameters or encrypted via key wrapping
using FC_WrapKey. In both the cases the keys enter/output from the module to and from the calling
application only.

7.4 Key/CSP Storage

Public and private keys are provided to the module by the calling process and according to the
methods in Table 10. The module does not perform persistent storage of keys. When keys and CSPs
are stored as plaintext in volatile memory (RAM), the protection of these keys and CSPs is provided
by the operating system enforcement of separation of address space.

The private key database (provided with the files key3.db/key4.db) mentioned in Table 10 is within
the module's physical boundary but outside its logical boundary.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 32 of 43

7.5 Key/CSP Zeroization

The application using the module is responsible for calling the appropriate destruction functions from
the API to zeroize keys and CSPs. The destruction functions then overwrite the memory occupied by
keys with zeros and deallocates the memory with the proper method call.

A plaintext secret or private key is zeroized when it is passed to a FC_DestroyObject call. All plaintext
secret and private keys must be zeroized when the module is shut down (with a FC_Finalize call),
reinitialized (with a FC_InitToken call), or when the session is closed (with a FC_CloseSession or
FC_CloseAllSessions call.

7.6 Key Establishment

The module provides Diffie-Hellman and EC Diffie-Hellman shared secret computation. The module
also provides AES key wrapping per [SP800-38F] and RSA key wrapping (encapsulation) using public
key encryption and private key decryption primitives as allowed by [FIPS140-2_IG] D.9. The shared
secret computation and key wrapping schemes may be used by an application implementing the TLS
protocol as a use case.

The module provides one approved key transport method according to IG D.9. The method comprises
using the approved key wrapping technique, AES-KW.

Table 7 and Table 8 specify the key sizes allowed in the FIPS mode of operation. According to “Table
2: Comparable strengths” in [SP800-57 the key sizes of key wrapping, transport, and shared secret
computation (using the respective symmetric algorithm, RSA, Diffie-Hellman and EC Diffie-Hellman)
provide the following security strengths:

• RSA key wrapping provides between 112 and 256 bits of encryption strength.

• Diffie-Hellman shared secret computation provides between 112 and 256 bits of encryption
strength.

• EC Diffie-Hellman shared secret computation provides between 128 and 256 bits of
encryption strength.

• AES-KW key establishment methodology provides between 128 and 256 bits of encryption
strength.

7.7 Handling of Keys and CSPs between Modes of Operation

As observed in Section 2.6, the module does not share CSPs between the FIPS-approved mode of
operation and the non-FIPS mode of operation.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 33 of 43

8 Electromagnetic Interference/Electromagnetic Compatibility
(EMI/EMC)

The test platforms listed in Table 3 have been tested and found to conform to the EMI/EMC
requirements specified by 47 Code of Federal Regulations, FCC PART 15, Subpart B, Unintentional
Radiators, Digital Devices, Class A (i.e., Business use). These devices are designed to provide
reasonable protection against harmful interference when the devices are operated in a commercial
environment.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 34 of 43

9 Self-Tests

9.1 Power-on Self-Tests

The module performs power-up or power-on self-tests (POSTs) automatically during loading of the
module by making use of default entry point (DEP). These POSTs ensure that the module is not
corrupted and that the cryptographic algorithms work as expected. No operator intervention is
necessary to run the POSTs. The self-tests cover different implementations depending on the
availability of those implementations in the operational environment (e.g., AES-NI).

While the module is executing the POSTs, services are not available, and input and output are
inhibited. The module is not available for use until successful completion of the POSTs.

The integrity of the module binary is verified using a DSA signature with 2048 bits and SHA-256 . The
signature value is computed at build time and stored in the .chk files. The value is recalculated at
runtime and compared against the stored value in the file. If the comparison succeeds, then the
remaining POSTs (consisting of the algorithm-specific Known Answer Tests) are performed.

On successful completion of the all the power-on tests, the module becomes operational and crypto
services are then available. If any of the power-up self-tests fail, the module enters the Error state.
In the Error state, all output is inhibited and no cryptographic operation is allowed. The module
returns the error code CKR_DEVICE_ERROR to the calling application to indicate the Error state. The
module needs to be reinitialized in order to recover from the Error state.

Table 11 details the self-tests that are performed on the FIPS-approved cryptographic algorithms
supported in the FIPS-approved mode of operation, using the Known-Answer Tests (KATs).

Table 11: Self-tests.

Algorithm Test

AES • KAT AES-CBC with 128-bit key, encryption

• KAT AES-ECB with 128-bit key, decryption

• KAT AES-CBC with 192-bit key, encryption

• KAT AES-ECB with 192-bit key, decryption

• KAT AES-CBC with 256-bit key, encryption

• KAT AES-ECB with 256-bit key, decryption

Triple-DES • KAT Triple-DES (CBC) with 192-bit key, encryption

• KAT Triple-DES (CBC) with 192-bit key, decryption

• KAT Triple-DES (ECB) with 192-bit key, encryption

• KAT Triple-DES (ECB) with 192-bit key, decryption

DSA • KAT DSA with 2048-bit key and SHA-256

RSA • KAT RSA encryption and decryption with 2048-bit key

• KAT RSA signature generation and verification with 2048-bit key and SHA-
256, SHA-384, and SHA-512

ECDSA • KAT ECDSA with P-256 and SHA-256

DRBG • KAT HASH_DRBG using AES-256 without PR

HMAC • KAT HMAC-SHA-1

• KAT HMAC-SHA-224

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 35 of 43

Algorithm Test

• KAT HMAC-SHA-256

• KAT HMAC-SHA-384

• KAT HMAC-SHA-512

SHS • KAT SHA-1

• KAT SHA-224

• KAT SHA-256

• KAT SHA-384

• KAT SHA-512

Module Integrity • DSA signature with 2048 bits and SHA-256

9.2 Conditional Self-Tests

Conditional tests are performed during operational state of the module when the respective crypto
functions are used. If any of the conditional tests fails, module transitions to error state. The module
returns the error code CKR_DEVICE_ERROR to the calling application to indicate the Error state. The
module needs to be reinitialized in order to recover from the Error state.

Table 12 lists the conditional self-tests performed by the functions.

Table 12: Conditional self-tests.

Algorithm Test

DSA Key generation PCT, signature generation and verification

ECDSA Key generation PCT, signature generation and verification

RSA Key generation PCT, signature generation and verification, and for encryption and
decryption

The module performs the DRBG health testing as specified in Section 11.3 of [SP800-90A]. The
CRNGT on the [SP800-90A] DRBG is not required per IG 9.8 [FIPS140-2_IG].

9.3 On-Demand self-tests

The module provides the Self-Test service to perform self-tests on demand. On demand self-tests can
be invoked by powering-off and reloading the module. This service performs the same cryptographic
algorithm tests executed during power-on. During the execution of the on-demand self-tests,
cryptographic services are not available and no data output or input is possible.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 36 of 43

10 Guidance

This section provides guidance for the Crypto Officer and the User to maintain proper use of the
module per FIPS 140-2 requirements.

10.1 Debug and Trace

As stated in Section 6.2, in operational mode, the ptrace(2) system call, the gdb(1) debugger and
strace(1) shall not be used. In addition, other tracing mechanisms offered by the Linux environment,
such as ftrace or systemtap, shall not be used.

10.2 Crypto-Officer Guidance

The binaries of the module are delivered via Red Hat Package Manager (RPM) packages. The Crypto
Officer shall follow this Security Policy to configure the operational environment and install the
module to be operated as FIPS 140-2 validated module. The version of the RPM packages containing
the FIPS validated module are listed in Section 2.3.

To configure the operating environment to support FIPS perform the following steps:

1. Install the dracut-fips package:

yum install dracut-fips

2. Recreate the INITRAMFS image:

dracut –f

After regenerating the initramfs, the Crypto Officer must append the following string to the kernel
command line by changing the setting in the boot loader:

fips=1

If /boot or /boot/efi reside on a separate partition, the kernel parameter boot=<partition of /boot or
/boot/efi> must be supplied. The partition can be identified with the following command,
respectively:

"df /boot"

or

"df /boot/efi"

For example:

$ df /boot

Filesystem 1K-blocks Used Available Use% Mounted on

/dev/sda1 233191 30454 190296 14% /boot

The partition of /boot is located on /dev/sda1 in this example. Therefore, the following string needs to
be appended to the kernel command line:

"boot=/dev/sda1"

When supporting other formats such as boot=UUID/LABEL, please refer to the FIPS section of the
'dracut.cmdline' man page.

Reboot to apply above settings.

After performing the above configuration, the Crypto Officer should proceed to module installation.
The RPM package of the module can be installed using standard tools recommended for the

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 37 of 43

installation of packages on an Amazon Linux 2 system (e.g., yum, RPM). The integrity of the RPM is
automatically verified during the installation of the module and the Crypto Officer shall not install the
RPM file if the yum server indicates an integrity error.

In addition, to support the module, the NSPR library must be installed that is offered by the
underlying operating system.

10.2.1 Access to Audit Data

The module may use the Unix syslog function and the audit mechanism provided by the operating
system to audit events. Auditing is turned off by default. Auditing capability must be turned on as
part of the initialization procedures by setting the environment variable NSS_ENABLE_AUDIT to 1.
The Crypto-Officer must also configure the operating system's audit mechanism.

The module uses the syslog function to audit events, so the audit data are stored in the system log.
Only the root user can modify the system log. On some platforms, only the root user can read the
system log; on other platforms, all users can read the system log. The system log is usually under
the /var/log directory. The exact location of the system log is specified in the /etc/syslog.conf file. The
module uses the default user facility and the info, warning, and err severity levels for its log
messages.

The module can also be configured to use the audit mechanism provided by the operating system to
audit events. The audit data would then be stored in the system audit log. Only the root user can
read or modify the system audit log.

10.3 User Guidance

The module must be operated in FIPS Approved mode to ensure that FIPS 140-2 validated
cryptographic algorithms and security functions are used.

The following module initialization steps must be followed by the Crypto-Officer before starting to use
the NSS module:

• Set the environment variable NSS_ENABLE_AUDIT to 1 before using the module with an
application.

• Use the application to get the function pointer list using the API “FC_GetFunctionList”.

• Use the API FC_Initialize to initialize the module and ensure that it returns CKR_OK. A return code
other than CKR_OK means the module is not initialized correctly, and in that case, the module
must be reset and initialized again.

• For the first login, provide a NULL password and login using the function pointer C_Login, which
will in-turn call FC_Login API of the module. This is required to set the initial NSS User password.

• Now, set the initial NSS User role password using the function pointer C_InitPIN. This will call the
module's API FC_InitPIN API. Then, logout using the function pointer C_Logout, which will call the
module's API FC_Logout.

• The NSS User role can now be assumed on the module by logging in using the User password.
And the Crypto-Officer role can be implicitly assumed by performing the Crypto-Officer services
as listed in Section 4.3.2.

The module can be configured to use different private key database formats: key3.db or key4.db.
“key3.db” format is based on the Berkeley Database engine and should not be used by more than
one process concurrently. “key4.db” format is based on SQL Database engine and can be used
concurrently by multiple processes. Both databases are considered outside the module's logical
boundary and all data stored in these databases is considered to be stored in plaintext. The interface
code of the module that accesses data stored in the database is considered part of the cryptographic
boundary.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 38 of 43

Secret and private keys, plaintext passwords and other security-relevant data items are maintained
under the control of the cryptographic module. Secret and private keys must be passed to the calling
application in encrypted (wrapped) form with FC_WrapKey and entered from calling application in
encrypted form with FC_UnwrapKey. The key transport methods allowed for this purpose in FIPS
Approved mode are AES, Triple-DES and RSA key wrapping using the corresponding Approved modes
and key sizes.

Note: If the secret and private keys passed to the calling application are encrypted using a
symmetric key algorithm, the encryption key may be derived from a password. In such a case, they
should be considered to be in plaintext form in the FIPS Approved mode.

Automated key transport methods must use FC_WrapKey and FC_UnwrapKey to output or input
secret and private keys from or to the module.

All cryptographic keys used in the FIPS Approved mode of operation must be generated in the FIPS
Approved mode or imported while running in the FIPS Approved mode.

10.3.1 TLS Protocol

The module does not implement the TLS protocol. The module implements the cryptographic
operations, including TLS-specific key generation and derivation operations, which can be used to
implement the TLS protocol.

10.3.2 Triple-DES Data Encryption

Data encryption using the same three-key Triple-DES key shall not exceed 216 Triple-DES (64-bit)
blocks, in accordance to [SP800-67] and IG A.13 in [FIPS140-2-IG].

10.3.3 Key Usage and Management

In general, a single key shall be used for only one purpose (e.g., encryption, integrity, authentication,
key wrapping, random bit generation, or digital signatures) and be disjoint between the modes of
operations of the module. Thus, if the module is switched between its FIPS mode and non-FIPS mode
or vice versa, the following procedures shall be observed:

• The DRBG engine shall be reseeded.

• CSPs and keys shall not be shared between security functions of the two different modes.

The DRBG shall not be used for key generation for non-approved services in the non-FIPS mode.

10.4 Handling Self-Test Errors

When the module enters the Error state, it needs to be reinitialized to resume normal operation.
Reinitialization is accomplished by calling FC_Finalize followed by FC_Initialize, or by power-cycling
(power-off, power-on) the module.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 39 of 43

11 Mitigation of Other Attacks

The module is designed to mitigate the attacks as described next.

11.1.1 Timing Attacks on RSA

The mitigation mechanism for mitigation of this attack is RSA blinding.

Timing attack on RSA was first demonstrated by [Kocher, 1996], who contributed the mitigation code
to our module. Most recently [Boneh; Brumley, 2019] showed that RSA blinding is an effective
defense against timing attacks on RSA.

11.1.2 Cache-Timing Attacks on RSA and DSA

These cache-timing attacks target the modular exponentiation operation used in RSA an DSA
algorithms.

The mitigation mechanism to mitigate this attack is the “cache invariant modular exponentiation”.
This is a variant of a modular exponentiation implementation that [Percival, 2019] showed to defend
against cache-timing attacks. This mechanism requires intimate knowledge of the cache line sizes of
the processor. The mechanism may be ineffective when the module is running on a processor whose
cache line sizes are unknown.

11.1.3 Arithmetic Errors in RSA Signatures

This attack is based on the fact that arithmetic errors in RSA signatures might leak the private key.
The mitigation technique for this attack is “Double-Checking RSA Signatures”.

[Ferguson; Schneier, 2003] recommend that every RSA signature generation should verify the
signature just generated.

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 40 of 43

12 Acronyms, Terms and Abbreviations

Term Definition

AES Advanced Encryption Standard

AESNI Advanced Encryption Standard New Instructions

CAVP Cryptographic Algorithm Validation Program

CMVP Cryptographic Module Validation Program

CSE Communications Security Establishment

CSP Critical Security Parameter

DANE DNS-based Authentication of Named Entities

DH Diffie-Hellman

DHE Diffie-Hellman Ephemeral

DRBG Deterministic Random Bit Generator

DTLS Datagram Transport Layer Security

ECDH Elliptic Curve Diffie-Hellman

ECDSA Elliptic Curve Digital Signature Algorithm

EDC Error Detection Code

GCM Galois-Counter Mode

HMAC (Keyed) Hash Message Authentication Code

IKE Internet Key Exchange

KAT Known Answer Test

KDF Key Derivation Function

NDRNG Non-Deterministic Random Number generator

NIST National Institute of Standards and Technology

PAA Processor Algorithm Acceleration

PKCS Public Key Cryptography Standard

POST Power On Self-Test

PR Prediction Resistance

PSS Probabilistic Signature Scheme

PUB Publication

SHA Secure Hash Algorithm

TLS Transport Layer Security

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 41 of 43

13 References

Boneh;
Brumley

Remote Timing Attacks are Practical

Accessed 2019-Jun-13

https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf

Ferguson;
Schneier

Practical Cryptography.

Wiley Publishing, Inc. 2003

FIPS140-2 FIPS PUB 140-2 - Security Requirements for Cryptographic Modules

May 2001

http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

FIPS140-2_IG Implementation Guidance for FIPS PUB 140-2 and the Cryptographic
Module Validation Program

May 7, 2019

https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-

program/documents/fips140-2/FIPS1402IG.pdf

FIPS180-4 Secure Hash Standard (SHS)

March 2012

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

FIPS186-4 Digital Signature Standard (DSS

July 2013

http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf

FIPS197 Advanced Encryption Standard

November 2001

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

FIPS198-1 The Keyed Hash Message Authentication Code (HMAC)

July 2008

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

Kocher Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
other Systems. CRYPTO ’96, Lecture Notes in Computer Science, v. 1109, pp.
104-113.

Springer-Verlag 1996

http://www.cryptography.com/timingattack/

Percival Cache Missing for Fun and Profit

Accessed 2019-Jun-13

http://www.daemonology.net/papers/htt.pdf

PKCS#1 Public Key Cryptography Standards (PKCS) #1: RSA Cryptography
Specifications Version 2.2
November 2016

https://tools.ietf.org/rfc/rfc8017.txt

https://crypto.stanford.edu/~dabo/papers/ssl-timing.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
https://csrc.nist.gov/CSRC/media/Projects/cryptographic-module-validation-program/documents/fips140-2/FIPS1402IG.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf
http://www.cryptography.com/timingattack/
http://www.daemonology.net/papers/htt.pdf
https://tools.ietf.org/rfc/rfc8017.txt

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 42 of 43

PKCS#11 PKCS#11 v2.40: Cryptographic Token Interface Standard

April 2015

https://www.oasis-open.org/standards#pkcs11-base-v2.40

RFC3711 The Secure Real-time Transport Protocol (SRTP)

March 2004

https://tools.ietf.org/html/rfc3711

RFC4347 Datagram Transport Layer Security

April 2006

https://tools.ietf.org/html/rfc4347

RFC4357 Additional Cryptographic Algorithms for Use with GOST 28147-89, GOST
R 34.10-94, GOST R 34.10-2001, and GOST R 34.11-94 Algorithms

January 2006

https://tools.ietf.org/html/rfc4357

RFC5246 The Transport Layer Security (TLS) Protocol Version 1.2

August 2008

https://tools.ietf.org/html/rfc5246

RFC5288 AES Galois Counter Mode (GCM) Cipher Suites for TLS

August 2008

https://tools.ietf.org/html/rfc5288

RFC5764 Datagram Transport Layer Security (DTLS) Extension to Establish Keys
for the Secure Real-time Transport Protocol (SRTP)

May 2010

https://tools.ietf.org/html/rfc5764

SP800-131A NIST Special Publication 800-131A Revision 2- Transitions:
Recommendation for Transitioning the Use of Cryptographic Algorithms
and Key Lengths

March 2019

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf

SP800-135 NIST Special Publication 800-135 Revision 1 - Recommendation for
Existing Application-Specific Key Derivation Functions

December 2011

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf

SP800-38A NIST Special Publication 800-38A - Recommendation for Block Cipher
Modes of Operation Methods and Techniques

December 2001

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

SP800-52 NIST Special Publication 800-52 Revision 1 - Guidelines for the Selection,
Configuration, and Use of Transport Layer Security (TLS)
Implementations

April 2014

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf

https://www.oasis-open.org/standards#pkcs11-base-v2.40
https://tools.ietf.org/html/rfc3711
https://tools.ietf.org/html/rfc4347
https://tools.ietf.org/html/rfc4357
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5288
https://tools.ietf.org/html/rfc5764
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar2.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-135r1.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf

Amazon Linux 2 NSS Cryptographic Module FIPS 140-2 Non-Proprietary Security Policy

© 2020 Amazon Web Services, Inc.; atsec information security.

This document can be reproduced and distributed only whole and intact, including this copyright notice.

 43 of 43

SP800-56A NIST Special Publication 800-56A - Recommendation for Pair-Wise Key
Establishment Schemes Using Discrete Logarithm Cryptography
(Revised)

March, 2007

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf

SP800-67 NIST Special Publication 800-67 Revision 2 - Recommendation for the
Triple Data Encryption Algorithm (TDEA) Block Cipher

November 2017

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf

SP800-90A NIST Special Publication 800-90A - Revision 1 - Recommendation for
Random Number Generation Using Deterministic Random Bit Generators

June 2015

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

http://csrc.nist.gov/publications/nistpubs/800-56A/SP800-56A_Revision1_Mar08-2007.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-67r2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

	Amazon Linux 2 NSS Cryptographic Module
	Module Version 1.0
	FIPS 140-2 Non-Proprietary Security Policy
	Document Version 1.21.0
	Last update: 2020-Mar-302019-07-232019-06-13
	Prepared by:
	atsec information security corporation
	9130 Jollyville Road, Suite 260
	Austin, TX 78759
	www.atsec.com
	Copyrights and Trademarks
	1 Introduction
	1.1 Purpose of the Security Policy
	1.2 Target Audience

	2 Cryptographic Module Specification
	2.1 Module Overview
	2.2 FIPS 140-2 Validation Scope
	2.3 Definition of the Cryptographic Module
	2.4 Definition of the Physical Cryptographic Boundary
	2.5 Tested Operational Environments
	2.6 Modes of Operation

	3 Module Ports and Interfaces
	4 Roles, Services and Authentication
	4.1 Roles
	4.2 Role Assumption and Operator Authentication
	4.2.1 Strength of the Operator Authentication Mechanism

	4.3 Services
	4.3.1 Calling Convention of API Functions
	4.3.2 Services in the FIPS-Approved Mode of Operation
	4.3.3 Services in the Non-FIPS-Approved Mode of Operation

	4.4 Algorithms
	4.4.1 FIPS-Approved Algorithms
	4.4.2 Non-Approved-but-Allowed Algorithms
	4.4.3 Non-Approved Algorithms

	5 Physical Security
	6 Operational Environment
	6.1 Applicability
	6.2 Policy

	7 Cryptographic Key Management
	7.1 Random Number Generation
	7.2 Key Generation
	7.3 Key Entry and Output
	7.4 Key/CSP Storage
	7.5 Key/CSP Zeroization
	7.6 Key Establishment
	7.7 Handling of Keys and CSPs between Modes of Operation

	8 Electromagnetic Interference/Electromagnetic Compatibility (EMI/EMC)
	9 Self-Tests
	9.1 Power-on Self-Tests
	9.2 Conditional Self-Tests
	9.3 On-Demand self-tests

	10 Guidance
	10.1 Debug and Trace
	10.2 Crypto-Officer Guidance
	10.2.1 Access to Audit Data

	10.3 User Guidance
	10.3.1 TLS Protocol
	10.3.2 Triple-DES Data Encryption
	10.3.3 Key Usage and Management

	10.4 Handling Self-Test Errors

	11 Mitigation of Other Attacks
	11.1.1 Timing Attacks on RSA
	11.1.2 Cache-Timing Attacks on RSA and DSA
	11.1.3 Arithmetic Errors in RSA Signatures

	12 Acronyms, Terms and Abbreviations
	13 References

